Bayesian Model Search for Nonstationary Periodic Time Series
نویسندگان
چکیده
منابع مشابه
Time-Varying Moving Average Model for Autocovariance Nonstationary Time Series
In time series analysis, fitting the Moving Average (MA) model is more complicated than Autoregressive (AR) models because the error terms are not observable. This means that iterative nonlinear fitting procedures need to be used in place of linear least squares. In this paper, Time-Varying Moving Average (TVMA) models are proposed for an autocovariance nonstationary time series. Through statis...
متن کاملAdaptive Bayesian Power Spectrum Analysis of Multivariate Nonstationary Time Series
This article introduces a nonparametric approach to multivariate time-varying power spectrum analysis. The procedure adaptively partitions a time series into an unknown number of approximately stationary segments, where some spectral components may remain unchanged across segments, allowing components to evolve differently over time. Local spectra within segments are fit through Whittle likelih...
متن کاملGaussian process for nonstationary time series prediction
In this paper, the problem of time series prediction is studied. A Bayesian procedure based on Gaussian process models using a nonstationary covariance function is proposed. Experiments proved the approach e4ectiveness with an excellent prediction and a good tracking. The conceptual simplicity, and good performance of Gaussian process models should make them very attractive for a wide range of ...
متن کاملNonparametric Wavelet Methods for Nonstationary Time Series
This article gives an overview on nonparametric modelling of nonstationary time series and estimation of their time-changing spectral content by modern denoising (smoothing) methods. For the modelling aspect localized decompositions such as various local Fourier (spectral) representations are discussed, among which wavelet and local cosine bases are most prominent ones. For the estimation of th...
متن کاملA Hybrid Approach to Model Nonstationary Space-time Series
In recent years the Space-Time Autoregressive Moving-Average (STARMA) model family has been proven a useful tool in modelling multiple time series data that correspond to different spatial locations (which are called space-time series). The STARMA model family is a statistical inductive model that can be used to describe stationary (or weak stationary) space-time processes. However, in real app...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the American Statistical Association
سال: 2019
ISSN: 0162-1459,1537-274X
DOI: 10.1080/01621459.2019.1623043